Extending the Season for Concrete Construction and Repair

Lynette A. Barna
Cold Regions Research & Engineering Laboratory
US Army Engineer Research & Development Center
Hanover, NH
Lynette.A.Barna@usace.army.mil
603-646-4503 (voice)

Concrete Materials and Fresh Concrete Properties
97th AASHTO Subcommittee on Materials
1 August 2011
Outline

• Cold Weather Admixture Systems (CWAS)
• How ‘antifreeze admixtures’ work
• Establishing the Technology (Phase I)
• Defining Engineering Parameters (Phase II)
• Guidance for Optimizing Admixture Dosage Rates (Phase III)
• The Way Forward
Acknowledgements

Recognize the support provided by the Federal Highway Administration and individual State Departments of Transportation – ID, MI, MT, NH, NY, PA, UT, VT, WI, and WY – who have made this work possible through the Transportation Pooled-Fund Program.
Cold Weather Admixture Systems

• Problem
 − The hydration rate of fresh normal concrete slows at low temperatures
 − No single commercial admixture protects concrete below freezing

• Solution
 − Chemical admixture suites depress the freezing point of mix water
 − Protects fresh concrete to an internal concrete temperature of 23°F
 − Promote early strength gain at temperatures below freezing
Cold Weather Admixture Systems

- **Benefits**
 - Saves time and money
 - No external heat required for water & aggregates, or substrate
 - Uses conventional construction practices and equipment
 - Provides an added capability to winter construction
 - Extends the concrete construction & repair season
 - ‘Antifreeze’ admixtures or Cold Weather Admixture Systems (CWAS)

$800 M/yr
Cold Weather Admixture Systems

• Benefits
 − Saves time and money
How Antifreeze Admixtures Work

- Combinations of chemical admixtures
 - Accelerates the rate of cement hydration
 - Reduces the amount of water to protect
 - Approved admixtures
 - No limit

![Graph showing temperature change over time with and without antifreeze admixture. The graph compares the freeze point and temperature changes for a control sample and a sample with antifreeze admixture, indicating the effectiveness of the admixture in delaying freezing.](image)
How Antifreeze Admixtures Work

- Combinations of chemical admixtures
 - Depresses the freezing point
 - Provides liquid water for hydration
 - Resists freezing

![Strength vs. Days Graph](image)
Establishing the Technology

• Phase I
 - Purpose – Establish the feasibility of batching, mixing, placing, and curing concrete in below freezing temperatures
 - Commercially available off-the-shelf chemical admixtures
 - Develop effective concrete formulations

Technical Approach
 - Laboratory investigation
 - Field trials
 - Select effective admixture combinations
 Workability, entrained air, initial freezing point
 - Confirm low-temperature performance
 Compressive strength, freeze-thaw durability, set time, critical maturity
Establishing the Technology

- Phase I – Compressive strength development
 Antifreeze mixtures cured at −4°C
 Compared to ACI 306
 Strength exceeded
Establishing the Technology

- Phase I – Freeze-thaw durability
 Antifreeze mixtures can be durable
Establishing the Technology

• Phase I

Field Trials
- 4 field trials conducted with State DOTs (NH and WI)
- Final demonstration project (Concord, NH)

Technology Transfer
- Final technical report (ERDC/CRREL TR-04-02)
- Guidance manual

Findings
- Eight antifreeze formulations generated
- Antifreeze mixtures workable, transportable, air entrainable
- Verified initial freezing point −5°C
- Compressive strength exceeded standard guidance
- Antifreeze mixtures can be durable
- Field trials proved this a feasible approach
- Developed tools for field use
- One size fits all
Establishing the Technology

- Field trials

Concord, NH (February 2003)

Air temp. = 14°F (Hi 28°F/Lo 0°F)
Concrete temp. = 50°F
West Lebanon, NH (December 2002)

Air temp. = −4°F (at 1030hrs)
Air temp = +14°F (at 1300 hrs)
Establishing the Technology

- Field trials

West Lebanon, NH (Dec 2002)
After 2 years exposure to New England winters

Control (tent and heat section)
Antifreeze Approach
Defining Engineering Parameters

• Phase II
 - Purpose – Freeze-thaw durability of antifreeze concrete mixtures not harmed – in some cases improved
 - Biggest problem – concrete degradation from freeze-thaw cycling exposure in cold regions
 - A better understanding is needed

Background
 - Air entrainment is current approach

Technical Approach
 - Laboratory investigation
 - Freeze-thaw durability testing
 - Verification testing of initial freezing point and compressive strength
Defining Engineering Parameters

- Phase II – Freeze-thaw durability
Defining Engineering Parameters

• Phase II

Findings
− Moderate dosages of admixtures can improve freeze-thaw durability of concrete
− Freeze-thaw durability increases with increasing admixture dosage
− Up to a point
 o Pore space volume fills up
− Mature concrete can have a lower freezing point than either fresh antifreeze concrete or normal mature concrete
 o Antifreeze concrete experiences fewer freeze thaw cycles and lasts longer

Deliverable
− Final technical report (ERDC/CRREL TR-06-8)
Guidance for Optimizing Admixture Dosage Rates

• Phase III
 − Purpose – Develop tools and guidance to specify admixture dosage rates based on forecasted weather conditions
 − Addressing the one-size-fits-all from Phase I
 − Increase economy of antifreeze concrete mixtures
 − Putting it into PRACTICE!

Technical Approach
 − 3 parts
 o Part 1 – Framework development
 o Part 2 – Develop design guidance
 o Part 3 – Computer-based design tool

Deliverable
 − Final technical report – manual or ‘cookbook’
Guidance for Optimizing Admixture Dosage Rates

- **Phase III**
 - Part 2 – Develop design guidance
 - Tailor admixture dosage rates
 - Understand
 - Job site characteristics
 - Climate characteristics
 - Relationship between admixture dosage rates and curing conditions
 - Field data
 - Range of conditions
 - Variety of structures
 - Air temperature
 - In situ concrete temperatures
 - Strength gain with time
Guidance for Optimizing Admixture Dosage Rates

• Phase III
 Part 2 – Develop design guidance

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Work Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>17–18 February 1994</td>
<td>Hanover, NH</td>
<td>Slab and Wall</td>
</tr>
<tr>
<td>10 December 2001</td>
<td>Littleton, NH¹</td>
<td>Bridge curbing</td>
</tr>
<tr>
<td>27 February 2002</td>
<td>Rhinelander, WI¹</td>
<td>Pavement</td>
</tr>
<tr>
<td>12 December 2002</td>
<td>North Woodstock, NH¹</td>
<td>Bridge footing</td>
</tr>
<tr>
<td>18 December 2002</td>
<td>West Lebanon, NH¹</td>
<td>Bridge curbing</td>
</tr>
<tr>
<td>14 February 2003</td>
<td>Concord, NH¹</td>
<td>Sidewalk</td>
</tr>
<tr>
<td>18 February 2004</td>
<td>New York, NY</td>
<td>Streets and sidewalks</td>
</tr>
<tr>
<td>23 February 2004</td>
<td>Grand Forks AFB, ND</td>
<td>Airfield pavement</td>
</tr>
<tr>
<td>7 February 2007</td>
<td>Juneau, AK</td>
<td>Pre-cast work</td>
</tr>
<tr>
<td>27 March 2007</td>
<td>Fairbanks, AK</td>
<td>Slabs on grade</td>
</tr>
<tr>
<td>25–27 March 2008</td>
<td>Ft. Wainwright, AK</td>
<td>Communications hardstand</td>
</tr>
</tbody>
</table>

¹ Phase I field sites [FHWA TPF-5(003)]
Guidance for Optimizing Admixture Dosage Rates

• Phase III
 Part 2 – Develop design guidance
 Evaluation tool
 o One-dimensional model
 o Heat transfer principles
 o Finite difference approach
 o Spreadsheet format
The Way Ahead

• Goal
 – Putting it into PRACTICE!

• Future Research
 – Develop the computer tool
 – Validate the computer tool
 – Refine field testing tools
 – Initial freezing point
 – Incorporating supplementary cementitious materials
 – Additional study on micro-pore development
 – Long-life material
 – Durability
 – Long-term field exposure
 – Exposure to salt scaling
Questions?

Lynette A. Barna
Cold Regions Research & Engineering Laboratory
US Army Engineer Research & Development Center
72 Lyme Road, Hanover, NH
Lynette.A.Barna@usace.army.mil
603-646-4503 (voice)