PPETG: Emulsion Task Force

Status Update: Identifying Research Needs for Emulsion Applications

Colin Franco P.E. – RI DOT
Contributors: Bryan Engstrom – RIDOT and Andrew Hanz – UW Madison and
Task Force Representation

Co-Chair- Roger Hayner, Colas Inc., AEMA
Co-Chair- Colin Franco RI DOT, TSP2, PPETG, SOMtrls, SCOR

Members From:
- Industry: AEMA/ ARRA/ ISSA
- Academics: CSU/ TX A&M/ U.WISC/ Cal State
- State DOT’s: TX, IA, UT, RI, CA
- FHWA
- NCPP
1) Emulsion Testing & Residue Recovery Methods
 – Arlis Kadrmas- Chair

2) Residue Tests
 – Gayle King- Chair

>Note: Subcommittees Combined as of March 2010
 – Arlis Kadrmas to chair combined group
Subcommittees

3) Aggregates, Mix Design, and Performance Tests
 - Mary Stroup-Gardiner - Chair

4) Approved Supplier Certification
 - Roger Hayner - Chair

5) Inspection & Acceptance
 - Colin Franco - Chair

6) Tack Coat Review *(Formed 7/26/10)*
 - Chris Abadie - Chair
Survey Efforts

<table>
<thead>
<tr>
<th>Survey Intent</th>
<th>Date Sent</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Identify Research Needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Identify properties for specs.</td>
<td>November 2010</td>
<td></td>
</tr>
<tr>
<td>2. Availability of tests.</td>
<td></td>
<td>DOT Materials and Maintenance Engineers</td>
</tr>
<tr>
<td>3. Define effects of aging/moisture.</td>
<td></td>
<td>Industry/Academia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of Applications Considered - Surface Treatments

- Tack Coat
- Fog Seal
- Prime Coats – Emulsion
- Prime Coats - Penetrating
- Dust Palliative (Non-Permanent)

• Others (identified by respondents): Flush Coat for OGFC in SW States, Crack filling, Cold Patching

• Rank all: High/Medium/Low
High Priority Applications

- Surface Treatments (N=24)
 - Chip Seals (100%)
 - Tack Coat (66.7%)
 - Micro-surfacing (62.5%)
 - Slurry Seal (39.1%)

- Cold Mixes (N=24)
 - FDR and CIR ~40% ranked High Priority
 - Cold Mixes (Plant Recycled/Virgin): 55% Medium Priority
Research Needs – *Chip Seals*

- Research adhesive test and other industries to improve adhesive properties of emulsions.
 - *ETF recommended BBS test for evaluation of adhesion (AASHTO TP91)*

- Application of DSR testing to better classify emulsion residues, tests available are currently inadequate. Include lab-field validation.
 - *ETF recommended NCHRP Problem statement.*

- Improvements to the Sweep Test with attention to pavement condition. Apply the ISSA WTA Test to chip seals.
 - *ETF promoting implementation of NCHRP 14-17.*
High Priority Applications

• Intent of survey was to prioritize applications.

• Three Surface Treatments were identified as high priority (N=24)
 – Chip Seals (100%)
 – Tack Coat (66.7%)
 – Micro-surfacing (62.5%)

• New survey written to focus on these areas.
New Survey – Participation and Distribution

- State Agency – NCPP. Sent to maintenance engineers.
- Other (Industry/Academia) – AEMA news blast and note from ETF.
Layout of New Survey

1. Identify properties required for a suitable Spec.
2. Identify main modes of failure and their mechanisms.
3. Are their tests available to address these failure modes?
4. Do aging/moisture damage contribute to failure?
 a) If yes, identify tests available and categorize them as: A: Adequate, B: In need of further development, C: Test available in other industry, or D: Development needed.
 b) If no test is available (D) indicate what properties a new test should evaluate.
Properties for Specifications

• Construction Properties – *Current ETF Focus*
 – Viscosity, breaking/setting rate, application rate, application temperature

• Residue Properties - *Current ETF Focus*
 – Elasticity/Ductility, adhesion/cohesion, rheology from HT to LT.

• QC/QA Testing
 – Emulsion quality, AASHTO Testing, aggregate properties, emulsion/aggregate compatibility
Distribution of Properties Required in a Specification
Modes of Failure and Mechanisms – Chip Seals - Examples

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Failure Mode</th>
<th>Materials Related</th>
<th>Design or Construction Related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip Seal</td>
<td>Chip Loss</td>
<td>Emulsion Performance Adhesion</td>
<td>Aggregate Quality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Premature Opening</td>
</tr>
<tr>
<td></td>
<td>Bleeding</td>
<td>Emulsion Performance Turning</td>
<td>Application Rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Movements</td>
<td>Gradation Traffic Volume</td>
</tr>
</tbody>
</table>

For both treatments design/construction guidance needed to reduce failures.
Influence of Moisture Damage/Aging on Performance

Majority feel aging is not important.

Mixed results for moisture damage.

For all treatments, the most frequent response was “None.”
Availability of Test Methods to Evaluate Moisture Damage/Aging

40% of respondents feel new test is needed.
Summary of Comments – Aging and Moisture Damage – Chip Seals

- **Current Methods**
 - A (Adequate): Gradation, Mix Design, Viscosity
 - B (Inadequate): DSR for initial unaged binder and BBR or DSR for low temp stiffness.
 - C (Modification): Construction Control

- **Research Needs**
 - Adhesion, evaluation of oxidation, simulate aggregate retention. *Materials Evaluation (ETF)*
 - Moisture content of substrate. Aggregate properties need to be measured and controlled. *Construction Control*
Conclusions

• ETF activities are focused on high priority emulsion applications.

• ETF is working to provide test methods to improve performance evaluation of materials.

• Opportunity exists to provide further guidance:
 – Mix Design Criteria and Limits
 – Construction Guidelines

• Survey indicates these contribute significantly to failures.
Thank you for your time!

Colin Franco
cfranco@dot.ri.gov

Andrew Hanz
ajhanz@wisc.edu